Telegram Group & Telegram Channel
🎲 Задача с подвохом: Монетки и ошибка интуиции

Условие:

У вас есть две монеты:

• Монета A: честная, вероятность выпадения орла = 50%
• Монета B: нечестная, у неё две стороны с орлами (орёл всегда выпадает)

Вы случайным образом выбираете одну монету (с вероятностью 50% каждая) и подбрасываете её один раз. Выпадает орёл.

Вопрос:
Какова вероятность того, что вы выбрали нечестную монету (Монета B)?

🔍 Разбор:

Нам нужна вероятность:
**P(B | O)** — вероятность того, что выбрана Монета B при условии, что выпал орёл.

📈 **Быстрая формула (Байес):**

P(B | O) = (P(O | 😎 * P(B)) / (P(O | A) * P(A) + P(O | 😎 * P(B))

Подставляем:
= (1 * 0.5) / (0.5 * 0.5 + 1 * 0.5)
= 0.5 / 0.75 ≈ 0.6667

Вероятность ≈ 66,7%

💻 **Проверим симуляцией (Python):**

```python
import random

def simulate(n_trials=100_000):
count_B_given_O = 0
count_O = 0

for _ in range(n_trials):
coin = random.choice(['A', 'B']) # выбираем монету
if coin == 'A':
result = random.choice(['H', 'T']) # честная монета
else:
result = 'H' # нечестная монета (всегда орёл)

if result == 'H':
count_O += 1
if coin == 'B':
count_B_given_O += 1

prob = count_B_given_O / count_O
print(f"Симуляция: вероятность P(B | O) ≈ {prob:.4f}")

simulate()
```

Примерный вывод:

```
Симуляция: вероятность P(B | O) ≈ 0.6665
```

💥 **Подвох:**

Многие интуитивно думают, что вероятность остаётся 50%, но факт выпадения орла изменяет наше знание о ситуации — это типичная ошибка игнорирования условной вероятности.

🧠 **Что важно для Data Science:**

• Принцип обновления вероятностей лежит в основе Байесовских моделей
• Ошибки интуиции часто приводят к неправильным выводам при работе с вероятностями
• Симуляция помогает проверять теорию и укреплять понимание статистики


@machinelearning_interview



tg-me.com/machinelearning_interview/1788
Create:
Last Update:

🎲 Задача с подвохом: Монетки и ошибка интуиции

Условие:

У вас есть две монеты:

• Монета A: честная, вероятность выпадения орла = 50%
• Монета B: нечестная, у неё две стороны с орлами (орёл всегда выпадает)

Вы случайным образом выбираете одну монету (с вероятностью 50% каждая) и подбрасываете её один раз. Выпадает орёл.

Вопрос:
Какова вероятность того, что вы выбрали нечестную монету (Монета B)?

🔍 Разбор:

Нам нужна вероятность:
**P(B | O)** — вероятность того, что выбрана Монета B при условии, что выпал орёл.

📈 **Быстрая формула (Байес):**

P(B | O) = (P(O | 😎 * P(B)) / (P(O | A) * P(A) + P(O | 😎 * P(B))

Подставляем:
= (1 * 0.5) / (0.5 * 0.5 + 1 * 0.5)
= 0.5 / 0.75 ≈ 0.6667

Вероятность ≈ 66,7%

💻 **Проверим симуляцией (Python):**

```python
import random

def simulate(n_trials=100_000):
count_B_given_O = 0
count_O = 0

for _ in range(n_trials):
coin = random.choice(['A', 'B']) # выбираем монету
if coin == 'A':
result = random.choice(['H', 'T']) # честная монета
else:
result = 'H' # нечестная монета (всегда орёл)

if result == 'H':
count_O += 1
if coin == 'B':
count_B_given_O += 1

prob = count_B_given_O / count_O
print(f"Симуляция: вероятность P(B | O) ≈ {prob:.4f}")

simulate()
```

Примерный вывод:

```
Симуляция: вероятность P(B | O) ≈ 0.6665
```

💥 **Подвох:**

Многие интуитивно думают, что вероятность остаётся 50%, но факт выпадения орла изменяет наше знание о ситуации — это типичная ошибка игнорирования условной вероятности.

🧠 **Что важно для Data Science:**

• Принцип обновления вероятностей лежит в основе Байесовских моделей
• Ошибки интуиции часто приводят к неправильным выводам при работе с вероятностями
• Симуляция помогает проверять теорию и укреплять понимание статистики


@machinelearning_interview

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1788

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Telegram has exploded as a hub for cybercriminals looking to buy, sell and share stolen data and hacking tools, new research shows, as the messaging app emerges as an alternative to the dark web.An investigation by cyber intelligence group Cyberint, together with the Financial Times, found a ballooning network of hackers sharing data leaks on the popular messaging platform, sometimes in channels with tens of thousands of subscribers, lured by its ease of use and light-touch moderation.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Machine learning Interview from us


Telegram Machine learning Interview
FROM USA